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Abstract 

 

Visualization of Real-Time 3D Echocardiography 

(RT3DE) is currently limited by the bi-dimensional nature 

of conventional monitors. The objective of this study is to 

implement and evaluate an optimized image-processing 

algorithm to generate multi-view auto-stereoscopic 

images. Custom-made software rendered test images 

(n=5) on a 9-view auto-stereoscopic 3D LCD. We 

designed and compared two algorithms that used 

hardware acceleration of graphic adapters. The quality 

of the final 3D image with the two algorithms was 

comparable. This study showed that the new-generation 

algorithm is very efficient in processing complex 

rendering such as visualization of RT3DE data.  

This algorithm might be an enabling factor for real-

time visualization of RT3DE on multi-view auto 

stereoscopic display, which might improve clinical 

imaging in a host of diseases and use of RT3DE in 

guidance of interventional procedures. 

  

1. Introduction 

Currently available Real-time 3D echocardiography 

(RT3DE) is strongly limited by the bi-dimensional nature 

of media (paper, PC monitor) used to visualize 3D 

datasets. Indeed, to visualize a 3D dataset, one must 

reformat data to multiplane slices or utilize perspective 

projections where depth perception is missing [1]. 

Auto-stereoscopic LCD monitors enable visualization 

of multiple views of 3D images while preserving depth 

perception without the need for wearing special glasses[2-

3]. 

Computational power required for generating multi-

view images is a limiting factor for online visualization of 

RT3DE [4]. 

Last year we reported the feasibility of using auto-

stereoscopic LCD to visualize multiple views of RT3DE 

data while preserving depth perception and our obtained 

results suggested an improved algorithm for the image 

processing. The objective of this study is to implement 

and evaluate a newly designed image-processing 

algorithm capable of taking full advantage of 

computational power of commercially available graphic 

adapters to generate multi-view auto-stereoscopic images. 

2. Methods 

2.1.  Multi-view auto-stereoscopic 3D LCD 

In this study we used a 9-view auto-stereoscopic 

Active Matrix Liquid Crystal Display (LCD) with a 

native resolution of 1600x1200 pixels. 

An auto-stereoscopic display is a special device 

capable of deploying two different images to each eye of 

one observer without the use of special glasses.  

The separation of images occurs using special lenses 

that are able to converge specific parts of the screen into 

distinct focal points.  When each eye of the observer is 

spatially located into two different focal points, the 

observer experiences a stereoscopic view. 

Stereoscopic views can be used to create the 

perception of depth in images, by feeding each eye with a 

different perspective view of a scene. 

A multi-view auto-stereoscopic display is an even 

more advanced display capable of rendering several 

images in as many focal points. This technology can 

provide the user, who changes his/her vantage point, with 

a natural change of perspective along with the perception 

of depth.  

 In a multi-view auto-stereoscopic display the full 

resolution of the display underlying the lens has to be 

partitioned and allocated to each view.  

Advances in the technological processes currently used 

in the construction of Active Matrix LCD enabled the 

production of high-resolution, very bright displays that 

are an ideal base for auto-stereoscopic displays.  

The full resolution (1600x1200) of the LCD used in 

this study is partitioned by the lens into nine (9) views 

each with a resolution of 533x400. 

ISSN 0276−6547 133 Computers in Cardiology 2006;33:133−136.



 

 

 

 

 

Figure 1 Comparison between conventional image 

generation (a) and 3D image generation (b). The OpenGL 

rendering pipeline is repeated for each view. Images are 

then weaved and shown to the user 

 

In LCD screens, each pixel is divided into 3 

rectangular sub-pixels: one for each color component. 

The separation into views occurs at a sub-pixel level. This 

means that the adjacent green, red, blue sub-pixels of one 

pixel go to different views. For each sub-pixel, the view 

is determined by the position of the pixel and the 

construction parameters of the lens. Given the indexes k,l 

that point to an individual red, green, blue sub-pixel, the 

following formula can be used to determine the view 

number N: 

 tot
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N
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In the set of parameters used in our 3D LCD (Ntot=9, 

X=4.5, α=9.4623°,Koffset=0) the view number N is always 

an integer. 

In the multi-view configuration, each frame of the 3D 

image contained nine different views of the scene. Each 

view was created by calling the same OpenGL drawing 

primitives but with the projection camera set into a 

slightly different position (Figure 1). All of the views 

where collected and then combined into one image by 

following an interleaving pattern that is dependent on the 

pixel-view mapping function described above (Figure 2). 

We refer to this image preparation process as image 

weaving process. 

Image weaving introduces computational overhead 

that is added to the time required to create each view. In 

this study we designed two different algorithms that took 

advantage hardware acceleration available on the Graphic 

Adapter to weave views. 

 

  

Figure 2 The lower portion shows an example of nine 

different views weaved into one multi-view image 

following the interlacing pattern required by our auto-

stereoscopic LCD. In the upper part, three views of the 

same scene before the weaving process. 

 

The first algorithm weaved 9 views at native resolution 

directly to the frame buffer. This technique accelerated 

the image generation process using the stencil buffer 

available since early versions of OpenGL.  

In synthesis, each pixel of the stencil buffer is initialized 

with a status value indicating the view number of each 

color component. Each time a view is being drawn, an 

appropriate stencil test controls and allows the actual 

drawing only in appropriate pixels of the screen. Views 

are computed at full resolution even if only a small set of 

pixels will be used in the final rendering. Unused pixels 

do not generate overhead since they fail the stencil test 

and geometric calculations are not performed. This 

approach combines image generation and weaving into 

one-step process that is entirely performed by the Graphic 

Processor Unit (GPU).  

The second algorithm, instead, exploits previously 

obtained results. In our previous study, we found that the 
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rendering time per pixel per view was almost invariant 

when the number of views greater than 3. We 

hypothesized that the rendering algorithm would be faster 

if it generated 9 views at a lower resolution and than 

weaved them at the native resolution using the GPU. In 

the second algorithm image generation and weaving 

occur without the need to transfer partial result from 

video memory into system memory. To ensure that 

lowering the resolution of the views did not negatively 

impact the overall quality of final image partial image 

rendering was performed at a resolution slightly higher 

that the resolution allocated to each view (512x512 pixels 

vs. 533x400 pixels). 

2.2. Test image visualization 

To assess performance of the two multi-view rendering 

algorithms, we measured the frame rate achieved when a 

commercially available workstation (Dual Xeon 3.6 GHz, 

Hyper-threading enabled, 2 Gb Ram) rendered five test 

images (n=5) on our 9-view auto-stereoscopic LCD 

(Philips, Eindhoven, Holland). The resolution of the 

resulting multi-view image was set to 1600x1200 pixels 

but each test image used a different degree of complexity 

that is quantified by the number of triangles rendered and 

the percent of screen that it covered (Table 1). 

 

Table 1 Test images had 3D scene with increasing 

complexity quantified by the number of triangles 

rendered and the percent of total pixels utilized on the 

screen. 

 Triangles rendered 
Screen covered 

(Percent) 

 

Test Image 1 

Test Image 2 

Test Image 3 

Test Image 4 

Test Image 5 

 

250.000 

400.000 

550.000 

700.000 

950.000 

 

25 

41 

62 

67 

83 
 

3. Results 

Using our first algorithm, the frame rate of test images 

ranged from 36 to 127 fps and the average frame rate was 

63 fps. Using our newly designed algorithm the rendering 

speed ranged from 80 to 89 fps and the average was 84 

fps (Figure 3). 

As it was expected, the frame rate decreased with 

increasing complexity of the scene rendered. When the 

complexity of the scene rendered was sufficiently high 

our new algorithm was faster than the previous generation 

(Test images 2 through 5, 47.25 fps vs. 82.75 fps, p 

<0.01) (Figure 4). 

In the test image with lowest complexity the first 

algorithm was faster than the second (127 fps vs 89 fps). 
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Figure 3 The obtained rendering speed of the two 

algorithms for each test image. 
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Figure 4 Comparison of the rendering speed in the test 

images in test image from 2 through 5 

4. Discussion and conclusions 

This study attempted to implement and evaluate an 

optimized algorithm for novel visualization of multi-view 

images. We showed that when rendering complex images 

on multi-view auto-stereoscopic LCD, it is faster to create 

and collect lower-resolution view and weave them into a 

full-resolution image rather than to weave 9 full-

resolution views directly into frame buffer.  The original 

contribution lays partly in having identified a method to 

use hardware acceleration available to perform the image 

weaving process while maintaining partial results entirely 

into video memory.  

Our methods relieve the stress put on the memory-bus 

by data transfer of partial results back and forth between 

Video Memory and System Memory. This resulted in 

higher rendering speed not only because the main 

processor could operate on system memory while the 

Graphic Processor was operating on video memory, but 

also because we could take advantage of the greater 

memory bandwidth available on the video memory. In 

fact, video memory in our system operated faster than 

system memory (DDR3 at 1000 MHz vs. DDR2 at 800 
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MHz). 

 In addition, we further enhanced the design of our 

algorithm by using the consideration, made in our 

previous study, that processing time per pixel per view 

was almost constant when number of views generated 

were greater than three. We reduced the number of pixels 

processes by lowering the resolution of partial views, but 

to preserve the quality of final image we kept the 

resolution of each rendered view higher than the 

resolution allocated on the LCD panel to one view 

(512x512 pixels vs. 533x400 pixels). Our results showed 

that this expedient was particularly advantageous when 

rendering complex scenes that used a large portion of 

pixels of the screen. 

 On the other hand, it did not improve the performance 

when rendering simplest test scene. The phenomena can 

be easily explained considering that the second algorithm 

has to transfer and process pixels of partial view even if 

they were merely blank. The first algorithm, instead, did 

not per perform any operation at all for blank pixels.  

 The new algorithm exploits a more efficient use of the 

geometric pipeline but overall performs better if the gain 

in the geometric pipeline of the graphic card justifies the 

constant overhead of weaving all the pixels of views. 

 That leads to the discussion of which algorithm to 

choose in a given situation. Results from this study 

suggest employing the first algorithm if the user has to 

draw a scene made of lines, dots or small particles, and 

the second algorithm if the scene is more complex and 

uses a large portion of the screen.  It is important to note 

that even in the worst case scenario the second algorithm 

was able to achieve a high frame rate (89 fps) and its 

performance stayed balanced under load (> 80 fps).   

The results suggest that new generation algorithm is well 

balanced and better suited for complex rendering of data 

from Real Time 3D Echocardiography. 

Our new generation algorithm promises to be an 

enabling factor to achieve the online visualization of 

RT3DE on 3DLCD in real-time and to unlock the full 

potential of this novel display in the clinical environment. 

The availability of online 3D visualization techniques 

could positively impact effectiveness of 3D imaging 

modalities in guiding interventional procedures such as 

pericardial effusion, percutaneous mitral valve repair, and 

transseptal puncture.  Further investigation is needed. 
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