
A New Generation Image Processing Algorithm Might

Enable Real-Time Visualization of 3D

Echocardiographic Data on a Multi-View Auto

Stereoscopic LCD

G Saracino, N Greenberg, S Fukuda, T Shiota, JD Thomas

Cleveland Clinic Foundation, Cleveland, OH, USA

Abstract

Visualization of Real-Time 3D Echocardiography

(RT3DE) is currently limited by the bi-dimensional nature

of conventional monitors. The objective of this study is to

implement and evaluate an optimized image-processing

algorithm to generate multi-view auto-stereoscopic

images. Custom-made software rendered test images

(n=5) on a 9-view auto-stereoscopic 3D LCD. We

designed and compared two algorithms that used

hardware acceleration of graphic adapters. The quality

of the final 3D image with the two algorithms was

comparable. This study showed that the new-generation

algorithm is very efficient in processing complex

rendering such as visualization of RT3DE data.

This algorithm might be an enabling factor for real-

time visualization of RT3DE on multi-view auto

stereoscopic display, which might improve clinical

imaging in a host of diseases and use of RT3DE in

guidance of interventional procedures.

1. Introduction

Currently available Real-time 3D echocardiography

(RT3DE) is strongly limited by the bi-dimensional nature

of media (paper, PC monitor) used to visualize 3D

datasets. Indeed, to visualize a 3D dataset, one must

reformat data to multiplane slices or utilize perspective

projections where depth perception is missing [1].

Auto-stereoscopic LCD monitors enable visualization

of multiple views of 3D images while preserving depth

perception without the need for wearing special glasses[2-

3].

Computational power required for generating multi-

view images is a limiting factor for online visualization of

RT3DE [4].

Last year we reported the feasibility of using auto-

stereoscopic LCD to visualize multiple views of RT3DE

data while preserving depth perception and our obtained

results suggested an improved algorithm for the image

processing. The objective of this study is to implement

and evaluate a newly designed image-processing

algorithm capable of taking full advantage of

computational power of commercially available graphic

adapters to generate multi-view auto-stereoscopic images.

2. Methods

2.1. Multi-view auto-stereoscopic 3D LCD

In this study we used a 9-view auto-stereoscopic

Active Matrix Liquid Crystal Display (LCD) with a

native resolution of 1600x1200 pixels.

An auto-stereoscopic display is a special device

capable of deploying two different images to each eye of

one observer without the use of special glasses.

The separation of images occurs using special lenses

that are able to converge specific parts of the screen into

distinct focal points. When each eye of the observer is

spatially located into two different focal points, the

observer experiences a stereoscopic view.

Stereoscopic views can be used to create the

perception of depth in images, by feeding each eye with a

different perspective view of a scene.

A multi-view auto-stereoscopic display is an even

more advanced display capable of rendering several

images in as many focal points. This technology can

provide the user, who changes his/her vantage point, with

a natural change of perspective along with the perception

of depth.

 In a multi-view auto-stereoscopic display the full

resolution of the display underlying the lens has to be

partitioned and allocated to each view.

Advances in the technological processes currently used

in the construction of Active Matrix LCD enabled the

production of high-resolution, very bright displays that

are an ideal base for auto-stereoscopic displays.

The full resolution (1600x1200) of the LCD used in

this study is partitioned by the lens into nine (9) views

each with a resolution of 533x400.

ISSN 0276−6547 133 Computers in Cardiology 2006;33:133−136.

Figure 1 Comparison between conventional image

generation (a) and 3D image generation (b). The OpenGL

rendering pipeline is repeated for each view. Images are

then weaved and shown to the user

In LCD screens, each pixel is divided into 3

rectangular sub-pixels: one for each color component.

The separation into views occurs at a sub-pixel level. This

means that the adjacent green, red, blue sub-pixels of one

pixel go to different views. For each sub-pixel, the view

is determined by the position of the pixel and the

construction parameters of the lens. Given the indexes k,l

that point to an individual red, green, blue sub-pixel, the

following formula can be used to determine the view

number N:

 tot

offset
N

X

Xlkk
N

mod)tan3(α−+
=

In the set of parameters used in our 3D LCD (Ntot=9,

X=4.5, α=9.4623°,Koffset=0) the view number N is always

an integer.

In the multi-view configuration, each frame of the 3D

image contained nine different views of the scene. Each

view was created by calling the same OpenGL drawing

primitives but with the projection camera set into a

slightly different position (Figure 1). All of the views

where collected and then combined into one image by

following an interleaving pattern that is dependent on the

pixel-view mapping function described above (Figure 2).

We refer to this image preparation process as image

weaving process.

Image weaving introduces computational overhead

that is added to the time required to create each view. In

this study we designed two different algorithms that took

advantage hardware acceleration available on the Graphic

Adapter to weave views.

Figure 2 The lower portion shows an example of nine

different views weaved into one multi-view image

following the interlacing pattern required by our auto-

stereoscopic LCD. In the upper part, three views of the

same scene before the weaving process.

The first algorithm weaved 9 views at native resolution

directly to the frame buffer. This technique accelerated

the image generation process using the stencil buffer

available since early versions of OpenGL.

In synthesis, each pixel of the stencil buffer is initialized

with a status value indicating the view number of each

color component. Each time a view is being drawn, an

appropriate stencil test controls and allows the actual

drawing only in appropriate pixels of the screen. Views

are computed at full resolution even if only a small set of

pixels will be used in the final rendering. Unused pixels

do not generate overhead since they fail the stencil test

and geometric calculations are not performed. This

approach combines image generation and weaving into

one-step process that is entirely performed by the Graphic

Processor Unit (GPU).

The second algorithm, instead, exploits previously

obtained results. In our previous study, we found that the

134

rendering time per pixel per view was almost invariant

when the number of views greater than 3. We

hypothesized that the rendering algorithm would be faster

if it generated 9 views at a lower resolution and than

weaved them at the native resolution using the GPU. In

the second algorithm image generation and weaving

occur without the need to transfer partial result from

video memory into system memory. To ensure that

lowering the resolution of the views did not negatively

impact the overall quality of final image partial image

rendering was performed at a resolution slightly higher

that the resolution allocated to each view (512x512 pixels

vs. 533x400 pixels).

2.2. Test image visualization

To assess performance of the two multi-view rendering

algorithms, we measured the frame rate achieved when a

commercially available workstation (Dual Xeon 3.6 GHz,

Hyper-threading enabled, 2 Gb Ram) rendered five test

images (n=5) on our 9-view auto-stereoscopic LCD

(Philips, Eindhoven, Holland). The resolution of the

resulting multi-view image was set to 1600x1200 pixels

but each test image used a different degree of complexity

that is quantified by the number of triangles rendered and

the percent of screen that it covered (Table 1).

Table 1 Test images had 3D scene with increasing

complexity quantified by the number of triangles

rendered and the percent of total pixels utilized on the

screen.

 Triangles rendered
Screen covered

(Percent)

Test Image 1

Test Image 2

Test Image 3

Test Image 4

Test Image 5

250.000

400.000

550.000

700.000

950.000

25

41

62

67

83

3. Results

Using our first algorithm, the frame rate of test images

ranged from 36 to 127 fps and the average frame rate was

63 fps. Using our newly designed algorithm the rendering

speed ranged from 80 to 89 fps and the average was 84

fps (Figure 3).

As it was expected, the frame rate decreased with

increasing complexity of the scene rendered. When the

complexity of the scene rendered was sufficiently high

our new algorithm was faster than the previous generation

(Test images 2 through 5, 47.25 fps vs. 82.75 fps, p

<0.01) (Figure 4).

In the test image with lowest complexity the first

algorithm was faster than the second (127 fps vs 89 fps).

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

������������
������������
������������
������������
������������
������������

�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

Rendering speed

0

50

100

150

1 2 3 4 5Image test

F
ra

m
e

ra
te

 (
fp

s)

������
������ Algorithm 1

Algorithm 2

Figure 3 The obtained rendering speed of the two

algorithms for each test image.

0

20

40

60

80

100

1 2Algorithm

F
r
a
m

e
 r

a
te

 (
fp

s)
P < 0.01

Figure 4 Comparison of the rendering speed in the test

images in test image from 2 through 5

4. Discussion and conclusions

This study attempted to implement and evaluate an

optimized algorithm for novel visualization of multi-view

images. We showed that when rendering complex images

on multi-view auto-stereoscopic LCD, it is faster to create

and collect lower-resolution view and weave them into a

full-resolution image rather than to weave 9 full-

resolution views directly into frame buffer. The original

contribution lays partly in having identified a method to

use hardware acceleration available to perform the image

weaving process while maintaining partial results entirely

into video memory.

Our methods relieve the stress put on the memory-bus

by data transfer of partial results back and forth between

Video Memory and System Memory. This resulted in

higher rendering speed not only because the main

processor could operate on system memory while the

Graphic Processor was operating on video memory, but

also because we could take advantage of the greater

memory bandwidth available on the video memory. In

fact, video memory in our system operated faster than

system memory (DDR3 at 1000 MHz vs. DDR2 at 800

135

MHz).

 In addition, we further enhanced the design of our

algorithm by using the consideration, made in our

previous study, that processing time per pixel per view

was almost constant when number of views generated

were greater than three. We reduced the number of pixels

processes by lowering the resolution of partial views, but

to preserve the quality of final image we kept the

resolution of each rendered view higher than the

resolution allocated on the LCD panel to one view

(512x512 pixels vs. 533x400 pixels). Our results showed

that this expedient was particularly advantageous when

rendering complex scenes that used a large portion of

pixels of the screen.

 On the other hand, it did not improve the performance

when rendering simplest test scene. The phenomena can

be easily explained considering that the second algorithm

has to transfer and process pixels of partial view even if

they were merely blank. The first algorithm, instead, did

not per perform any operation at all for blank pixels.

 The new algorithm exploits a more efficient use of the

geometric pipeline but overall performs better if the gain

in the geometric pipeline of the graphic card justifies the

constant overhead of weaving all the pixels of views.

 That leads to the discussion of which algorithm to

choose in a given situation. Results from this study

suggest employing the first algorithm if the user has to

draw a scene made of lines, dots or small particles, and

the second algorithm if the scene is more complex and

uses a large portion of the screen. It is important to note

that even in the worst case scenario the second algorithm

was able to achieve a high frame rate (89 fps) and its

performance stayed balanced under load (> 80 fps).

The results suggest that new generation algorithm is well

balanced and better suited for complex rendering of data

from Real Time 3D Echocardiography.

Our new generation algorithm promises to be an

enabling factor to achieve the online visualization of

RT3DE on 3DLCD in real-time and to unlock the full

potential of this novel display in the clinical environment.

The availability of online 3D visualization techniques

could positively impact effectiveness of 3D imaging

modalities in guiding interventional procedures such as

pericardial effusion, percutaneous mitral valve repair, and

transseptal puncture. Further investigation is needed.

Acknowledgements

Support for this study is partially provided by a grant

funded by Philips 3D Solution, Eindhoven.

References

[1] G Saracino, NL Greenberg, T Shiota, C Corsi, C Lamberti,

JD Thomas. Fast interactive real-time volume rendering of

real-time three-dimensional echocardiography: an

implementation for low-end computers. Computers in

Cardiology 2002;29:613-616.

[2] C van Berkel, D W Parker and A R Franklin. Multiview

3D-LCD. Proc SPIE 1996;2653:32-39.

[3] S Ichinose, N Testutani & M Ishibashi. Full-Color

Stereoscopic Video Pickup and Display Technique without

Special Glasses. SID 1989;89:188-191.

[4] N Davies, M McCormick and L Yang. Three-dimensional

imaging systems: a new development. Appl Optics

1988;27(21):4520-4528.

[5] D E Sheat, G R Chamberlin, P Gentry, J S Leggatt and D J

McCartney. 3-D Imaging Systems for Telecommunications

Applications. Proc SPIE 1992;1669:186-192.

[6] A Woods, T Docherty and R Koch. Image Distortions in

Stereoscopic Video Systems. Proc SPIE 1993;1915:36-38.

[7] G S B Street. Method and apparatus for use in producing

autostereoscopic images; Eur Pat 1983.

[8] Y Yeh and L D Silverstein. Limits of Fusion and Depth

Judgement in Stereoscopic Colour Displays. Human

Factors 1990;32(1):45-60.

[9] C van Berkel, A R Franklin and J R Mansell. Design and

Applications of Multiview 3D-LCD. Proc SID Euro

Display 1996;96:109-112.

[10] W L Martens. Physiological approach to optimal

stereographic game programming: a technical guide. Proc

SPIE;2653:261-270.

Address for correspondence

James D. Thomas, MD

Department of Cardiovascular Medicine

Cleveland Clinic Foundation

Desk F15

9500 Euclid Avenue

Cleveland, OH 44195

136

